lidar_data_processor module¶
- class lidar_data_processor.Lidar_Processor(region: str = '', polygon_array: list = [], epsg: int = 3857, default_epsg: int = 3857)¶
Bases:
object
- fetch_file()¶
Main function that fetches lidar point cloud data from EPT resources from AWS cloud storage.
Args: None
- Returns:
Dataframe: Geopandas data frame for the identified region String: Path of the downloaded tiff file list: Pipeline array of the found region
- get_geo_df(array_data: ndarray) GeoDataFrame ¶
Creates Dataframe from the PDAL pipeline array
- Args:
array_data (Numpy Array): Numpy array of point clouds from pdal pipeline
- Returns:
geopandas dataframe: geopandas dataframe of the downloaded region
- get_region_from_boundary()¶
Identifies the required region from the polygon boundary Args: None
- Returns:
Tuple: Tuple of bounds of the identified region JSON: json of the full region data from the metadata
- get_region_from_name()¶
Identifies the required region from the region name Args: None
- Returns:
Tuple: Tuple of bounds of the identified region JSON: json of the full region data from the metadata
- pipline_executer()¶
Executes the PDAL pipeline to fetch lidar point cloud data from the AWS cloud storage.
Args: None
- Returns:
list: List of point clouds fetched from AWS
- pipline_modifier()¶
Modifies the PDAL pipeline template to the required region PDAL template
Args: None
- Returns:
list: List of pipeline template with modified parameters